PORTFOLIO OPTIMAL ANALYSIS: SIMPLE CAPM TESTING, COMPARING BENCHMARK PERFORMANCE TO MUTUAL FUNDS (EQUITY AND MIXED), AND COMPARING PORTFOLIOS PERFORMANCE THROUGH EX-POST AND BLACK-LITTERMAN MODEL ILLUSTRATION

(A Case Study on Public Companies listed in Indonesia Stock Exchange and 53 mutual funds (equity and mixed) managed in 2010 – 2014)

by:
Abdullah Basuki
Management Department, Economic and Business Faculty
Brawijaya University
abdullah_basuki@outlook.com
Supervisor:
Atim Djazuli

ABSTRACT

This study deals with "asset allocation" which aims at finding out the kinds of positivist approach to portfolio choice. There are many kinds of models about portfolio analysis. In this study, the first done is trying to illustrate some models such as single index model, the CAPM and Black’s zero-beta CAPM which are models that are often discussed in investment topics. Further analyzes were to see replication of the descriptive part of the equilibrium model by simple test of the CAPM. There is a certain problematic phenomenon found in the model, furthermore the next step is to see the present conditions related to the indication of market efficiency by evaluating the performance of the benchmark to the portfolio managed by the investment manager involving both equity and mixed samples. Furthermore, it also aims about the mean-variance optimized portfolio at evaluating the performance of the portfolios using market data in ex-post.

This study on illustrate portfolio optimization used 10 sample stocks of public companies listed on IDX and the stocks are often in the JII (Jakarta Islamic Index) related to sharia basis and the most liquid stocks traded on IDX. Furthermore, this study also used additional stocks in addition it came up to 40 samples when simple test of the CAPM was conducted. When evaluating the performance of mutual funds, this study used 53 samples (equity and mixed, sharia and conventional based), which have been managed in 2010 to 2014. There are t-statistics that was used to calculate the regression coefficient \bar{a} and \bar{b} in simple test of the CAPM and evaluate the performance of mutual funds. Last, turns out to the Black-Litterman model having positivist approach to portfolio choice is considered as better model from previous empirical results by illustrate the model also it can be taken as one of the alternatives besides other various models.

Keywords: mean-variance, single index model, capital asset pricing model, benchmark performance, Black-Litterman.
INTRODUCTION

Uncertainty condition made investor to think about the concept of risk reduction for their investment. The concept of risk reduction is very important for every investor to be able to manage the risk/reward. A concept was initiated by Harry Markowitz (1952) that suggested to choose an efficient portfolio. It is known as efficient frontier, which combines assets implying efficient portfolio. Markowitz suggested that every investor diversify their efficient portfolio. The concept is also known as the “Mean Variance Analysis”. Markowitz (1952), Sharpe (1964), Lintner (1965), and Mossin (1966) are the pioneers in statistical explanation to implement the diversification, which is commonly known as the proverb of “Do not put all the eggs in one basket”.

In this study, the first we tries to illustrate the model, such as single index model and the CAPM. This study tries to able and to know about the model by construct the model. After that, the study tries to look descriptive part of the model by simple test CAPM. The object of analysis looks of descriptive about the model. Furthermore the studies analyze the phenomena which relate the research about performance of mutual funds against the benchmark. Then still relate about before that looking for empirical evidence of performance portfolio against other portfolios which is simulated on past condition. The last is illustrating the model which is as positivist approach from previous empirical evidence and as alternative of other models. Of course, there are many investment strategies in this area and this study we made to scope of the model only in the discussion.

LITERATURE REVIEW

Markowitz framework, according to Focardi and Fabozzi (2004), “Markowitz assumed the investors order their preferences according to utility index, with utility as a convex function that takes into account investor risk-returns preferences. Markowitz assumed that stock returns are jointly normal. As consequence, the return of any portfolio is normal distribution, which can be characterized by two parameter: the mean and the variance.”

The single index model, according to Elton, Gruber (2014), “this suggests that one reason security returns might be correlated is because of a common response to market changes, and a useful measure of this correlation might be obtained by relating the return on a stock to the return on a stock market index. The single-index model is used not only in estimating the correlation matrix but also in efficient market test and in equilibrium test.”

Zero-beta portfolio, according to Focardi and Fabozzi (2004), “Fischer Black demonstrated that neither the existence of a risk-free asset nor the requirement that investors can borrow and lend at the risk-free rate is necessary for the theory to hold. Black’s argument was as follows. The beta of a risk-free asset is zero. Suppose that a portfolio can be created such that it is uncorrelated with the market. That portfolio would then have a beta of zero, and Black labeled that portfolio a “zero-beta portfolio.” He set forth the conditions for constructing a
zero-beta portfolio and then showed how the CAPM can be modified accordingly.”

The Black-Litterman approach is the reverse construction of the portfolio returns from portfolio composition. The model starts from the relationship between the expected return to Markowitz’ model and the CAPM. The Black-Litterman model allows investors to have some of views on some stocks in portfolio. The assets can be taken into the portfolio. As an alternative, if it is not believed that the returns from average historical data can implement Black-Litterman model as this model has different ways allowing investors to view some of the stocks also give opinions.

RESEARCH METHODOLOGY

Case study analysis involve contextual analysis of matters relating to similar situation, useful in understanding certain phenomena, and gathering further theories for empirical testing (Sekaran, 2003:121). This study we illustrate in portfolio analysis by construct the model. After that we try to test the model, and looking for the phenomena relate about portfolio analysis. In addition, this study is exploring model from previous model and the stocks that chosen often in JII index.

The sample of public companies include in the section of JII (Jakarta Islamic Index) that the most active sharia stocks and part of all equities in IDX. The study observed on JII index in five years until 2014. The sample for mutual funds is funds which active and observed by OJK in five years until 2014.

The data selected and have criteria’s are as follows:

1. Public companies which are listed in IDX from 2010 until 2014.
2. Public companies which are often in JII index from 2010 until 2014.
3. In mutual funds, equity and mixed, that active from 2010 until 2014.

Method of data analysis:

1. Individual securities,
 a. Returns, (West, 2004);
 \[r = \ln\left(\frac{P_t}{P_{t-1}}\right) \]
 Ln = the natural logarithm,
 \(P_{t-1} \) = previous price at the day,
 \(P_t \) = price at the day.
 b. Mean = average returns (Jones, 2008:153);
 \[\text{average} = \frac{1}{N} \sum_{i=1}^{N} r_i \]
 c. Variance (\(\sigma^2 \)) (Jones, 2008:158);
 \[\sigma^2 = \frac{\sum_{i=1}^{n} (r - \bar{r})^2}{n - 1} \]
 \(r \) = return,
 \(\bar{r} \) = average return,
 \(n \) = amount of data.
 d. The standard deviation, \(\sigma = \sqrt{\sigma^2} \)
 e. Covariance (Fama,1976:49);
 \[\sigma_{ij} = \frac{\sum_{l=1}^{n} [r_{il} - E(r_i)][r_{lj} - E(r_j)]}{n - 1} \]
 f. Correlation coefficient (Focardi and Fabozzi, 2004:328);
 \[\text{Correlation}_{i,j} = \frac{\sigma_{ij}}{\sigma_i \cdot \sigma_j}; j \neq i \]
2. Portfolio;
 a. Expected returns, \(E(R_p) \) (Jones, 2008:183);
 \[E(R_p) = \sum_{i=1}^{n} W_i \ E(R_i) \]
\[E(R_p) = \text{the expected return on the portfolio,} \]
\[W_i = \text{the portfolio weight for the } i\text{th security,} \]
\[E(R_i) = \text{the expected return on the } i\text{th security,} \]
\[n = \text{the number of different securities in the portfolio.} \]

b. The variance of portfolio, (Copeland, et.al, 2005:128);
\[\sigma_p^2 = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{N1} & \sigma_{N2} & \cdots & \sigma_{NN} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{bmatrix} \]

3. Mutual Funds;
 a. Fund per-share value (or NAB per unit) (Benninga, 2004);
 \[\frac{\text{fund net asset value (NAB)}}{\text{number of share in fund (jumlah unit)}} \]
 b. Jensen measurement or alpha mutual funds, (Malkiel, 1995);
 \[R_{Rd} - R_f = \alpha + \beta (R_{MKT} - R_f) + e_i \]
 c. Sharpe Ratio, (Tandelilin, 2010:494);
 \[S_{Rd} = \frac{R_{Rd} - R_f}{\sigma_{Rd}} \]
 d. Treynor Ratio (Tandelilin, 2010:497);
 \[T_{Rd} = \frac{R_{Rd} - R_f}{\beta_{Rd}} \]
\[R_{Rd} = \text{return of mutual fund (reksa dana),} \]
\[R_f = \text{Risk-free, } \bar{R}_f = \text{mean risk-free (SBI)} \]
\[\bar{R}_{Rd} = \text{mean of mutual fund} \]
\[\sigma_{Rd} = \text{standard deviation of mutual fund,} \]
\[\beta_{Rd} = \text{beta of mutual fund.} \]

4. Single index model;
a. Step by step (Elton, et.al, 2014:30): compute mean return, \(\bar{R}_i \); Excess return, \(\bar{R}_i - R_f \); Beta \(\beta_i \); Unsystematic risk \(\sigma_{ie}^2 \); Ratio excess return over beta \(\frac{(\bar{R}_i - R_f)}{\beta_i} \), then rearrangement or re-ranking from the highest to lowest value;
\[\frac{(\bar{R}_i - R_f)}{\sigma_{ie}^2} ; \frac{\beta_i^2}{\sigma_{ie}^2} ; \sum_{j=1}^{i} \frac{(\bar{R}_j - R_f)}{\sigma_{ej}^2} ; \sum_{j=1}^{i} \frac{\beta_j^2}{\sigma_{ej}^2} ; \]
\[C_i = \frac{\sigma_M^2 \sum_{j=1}^{i} \left(\frac{(\bar{R}_j - R_f)}{\sigma_{ej}^2} \frac{\beta_j}{\sigma_{ej}^2} \right)}{1 + \sigma_M^2 \sum_{j=1}^{i} \left(\frac{\beta_j^2}{\sigma_{ej}^2} \right)} \]
\[\sigma_M^2 = \text{variance index (IHSG)} \]
\[\bar{R}_j = \text{the average return of individual share} \]
\[R_f = \text{risk-free} \]
\[\beta_j = \text{individual beta share} \]
\[\sigma_{ej}^2 = \text{unsystematic risk, not associated with movement of the market index.} \]
\[\text{Cut off Rate (C*)} \]

(b) without short sales is taken from the last Ci after re-ranking ratio excess return over beta, the last \(\frac{(R_i - R_f)}{\beta_i} > Ci \) .

Calculating \(Z_i \) to know numerator (Elton, et.al, 2014:183):
\[Z_i = \frac{\beta_i \left(\frac{(\bar{R}_i - R_f)}{\beta_i} - C^* \right)}{\sigma_{ei}^2 \beta_i} \]
\[\text{calculate proportion, } X_i \ldots X_n \]
\[X_i = \frac{Z_i}{\sum_{j=1}^{n} Z_j} \]
5. Capital asset pricing model;
(Elton, et.al, 2014:83):
\[\bar{R}_e = R_f + \left(\frac{\bar{R}_M - R_f}{\sigma_M} \right) \sigma_e \]
Find the highest value as possible, \(\frac{\bar{R}_p - R_f}{\sigma_p} \) which means by quadratic program finding the combination of Sharpe ratio as the highest value as possible, \(\frac{\bar{R}_p - R_f}{\sigma_p} \). Formal proved for optimal portfolio by the equation of the SML is as follows (Elton, et.al, 2014:296):
\[E(R_p) = R_f + \frac{\text{Cov}(R_p, R_m)}{\text{Var}(R_m)} \{ E(R_m) - R_f \} \]
\[E(R_p) = R_f + \beta_p \{ E(R_m) - R_f \} \]
Using function - Zero-Beta portfolio (Benninga, 2014:234):
\[x = \frac{S^{-1}\{E(r) - c\}}{\text{Sum}[S^{-1}\{E(r) - c\}]} \]
The equation of the SML, (Benninga, 2014:226):
\[E(R_x) = E(R_e) + \beta_x[E(R_m) - E(R_e)] \]

6. A simple test of descriptive part of the CAPM;
First pass regress for each asset i (Elton, et.al, 2014:341):
\[R_i = \alpha_i + \beta_i R_m + \bar{\varepsilon}_i \]
Second pass (cross-sectional) regression (Benninga, 2014:276):
\[\bar{R}_i = \gamma_0 + \gamma_1 \beta_i \]

7. Black-Litterman Model;
The market (benchmark) expected return (Benninga, 2014:315):
\[
\begin{bmatrix}
\text{Benchmark Portfolio Return} \\
\text{Variance Covariance Matrix} \text{Benchmark Portfolio Proportion} \\
\end{bmatrix}
\]
\[
\text{Expected Benchmark Return} - \text{Free Risk} \\
\text{Variance Covariance Matrix} \text{Benchmark Portfolio Proportion} \\
\]
\[
\text{+ Free Risk Rate}
\]
Which
\[
\begin{bmatrix}
\text{Expected Benchmark Return} - \text{Free Risk} \\
\text{Variance Covariance Matrix} \text{Benchmark Portfolio Proportion} \\
\end{bmatrix}
\]
is normalizing factor.
Suppose there is a portfolio containing 10 assets: stock A, stock B, stock C, ..., stock J.
Adjusted return from given opinions (Benninga, 2014:320):
\[
\begin{bmatrix}
T_{\text{stock A, market}} \\
T_{\text{stock B, market}} \\
\vdots \\
T_{\text{stock J, market}} \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
\sigma_{\text{stock A, stock B}} & \ldots & \sigma_{\text{stock A, stock J}} \\
\sigma_{\text{stock B, stock A}} & 1 & \ldots & \sigma_{\text{stock B, stock J}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{\text{stock J, stock A}} & \sigma_{\text{stock J, stock B}} & \ldots & 1 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
\delta_{\text{stock A}} \\
\delta_{\text{stock B}} \\
\vdots \\
\delta_{\text{stock J}} \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
T_{\text{stock A, opinion adjusted}} \\
T_{\text{stock B, opinion adjusted}} \\
\vdots \\
T_{\text{stock J, opinion adjusted}} \\
\end{bmatrix}
\]
RESULT AND DISCUSSION

1. The MPT Optimization.

Firstly, let’s suppose that the investor agrees to have the statistical calculation and tries to illustrate the model.

The Single Index Model:

<table>
<thead>
<tr>
<th>Code</th>
<th>Optimal Portfolio</th>
<th>GMVP without short sales</th>
<th>GMVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AALI.JK</td>
<td>0%</td>
<td>13.03%</td>
<td>12.35%</td>
</tr>
<tr>
<td>ASII.JK</td>
<td>15.05%</td>
<td>3.63%</td>
<td>6.75%</td>
</tr>
<tr>
<td>INDF.JK</td>
<td>0%</td>
<td>10.29%</td>
<td>14.59%</td>
</tr>
<tr>
<td>INTP.JK</td>
<td>0%</td>
<td>8.69%</td>
<td>10.62%</td>
</tr>
<tr>
<td>KLBF.JK</td>
<td>46.70%</td>
<td>7.19%</td>
<td>9.45%</td>
</tr>
<tr>
<td>PGAS.JK</td>
<td>0%</td>
<td>12.14%</td>
<td>10.62%</td>
</tr>
<tr>
<td>SMRA.JK</td>
<td>0%</td>
<td>0.00%</td>
<td>-12.64%</td>
</tr>
<tr>
<td>TLKM.JK</td>
<td>14.04%</td>
<td>13.88%</td>
<td>14.08%</td>
</tr>
<tr>
<td>UNTR.JK</td>
<td>0%</td>
<td>6.14%</td>
<td>8.60%</td>
</tr>
<tr>
<td>UNVR.JK</td>
<td>24.22%</td>
<td>25.01%</td>
<td>23.29%</td>
</tr>
</tbody>
</table>

Total weight	100%	100%	100%
Expected Return	**2.95%**	1.60%	1.46%
variance	0.0026	**0.0015**	**0.0013**
σ	5.14%	3.86%	3.65%
Sharpe Ratio	**0.43**	0.23	0.20

Source: data processed, 2015

The Single Index Model on tangency portfolio if it goes with risk-free asset of 0.72% from SBI based on the average monthly percentage.

The standard capital assets pricing model (CAPM) and Zero-beta portfolio:

| Source: data processed, 2015 |

The market portfolio M is the highest slope or the tangency of a set of optimal portfolio which can be found by computing the market portfolio M or it is done by finding the highest slope or highest Sharpe ratio for risky assets.
Figure 1: Efficient frontier (short sales allowed)

Figure 2: Comparing two efficient frontiers

Figure 3: Security Market Line

2. Empirical Tests of the CAPM.

Figure 4: Average returns vs. betas

T-test of intercept and its slope has a relation $\bar{R}_t = 0.0115 + 0.0112\beta_t$. In figure shows 87% variation in expected return as it is explained by beta differences. Seeing from its r-square, it shows that the linearity. Although it is linear, but the relationship of the SML test is still considered failed.
The CAPM shows the equilibrium telling us that the betas and average returns (of risky assets) will have linear if the market (of risky assets) at the mean-variance efficient portfolio. On the other hand, the market (market proxy of risky assets or benchmark used as market portfolio) shows inefficient ex-post (figure 5) but the market portfolio M is unobservable because it talks about all risky assets in the economy.

3. Comparing performance of Benchmark to Mutual Funds.

There are many mutual funds that underperform than IHSG and the average turns out to have negative value (-0.002797).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>T-statistics for Jensen Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHSG as Benchmark Portfolio</td>
<td></td>
</tr>
<tr>
<td>Average α</td>
<td>-0.002797</td>
</tr>
<tr>
<td>Amount of Mutual Fund</td>
<td>53</td>
</tr>
<tr>
<td>Amount of mutual funds α's positive</td>
<td>8 15.09%</td>
</tr>
<tr>
<td>α's negative</td>
<td>45 84.91%</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
</tr>
<tr>
<td>Amount of α statistically significant</td>
<td>21</td>
</tr>
<tr>
<td>α's positive and statistically significant</td>
<td>0</td>
</tr>
<tr>
<td>α's negative and statistically significant</td>
<td>21</td>
</tr>
</tbody>
</table>

Source: data processed, 2015

During 5 years period that is from 2010 until 2014, there are 8 mutual funds or 15.09% from 53 mutual funds which are considered to be able to beat the benchmarks (IHSG). On the other hands, there is around 84.91% or there are 45 mutual funds which are considered to have negative performances or have the performance under the levels suggested by the benchmark (IHSG). It means that the market has the difficulty to get the abnormal return than the benchmark around five years.
Table 4
Compare on average

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average return, IHSG (monthly)</td>
<td>1.21%</td>
<td></td>
</tr>
<tr>
<td>Risk, Standard deviation, IHSG (monthly)</td>
<td>4.46%</td>
<td></td>
</tr>
<tr>
<td>Excess return, IHSG (monthly)</td>
<td>0.48%</td>
<td></td>
</tr>
</tbody>
</table>

53 Mutual Funds average return : 0.90%
Risk, standard deviation : 4.63%
Average excess return of 53 mutual funds : 0.17%
Average beta : 0.9344
Average α, Jensen : -0.002797
Average r-squared : 0.8249

Source: data processed, 2015

The performance of mutual funds and the benchmark as it is found out to be difficult to perform exceeding the benchmark.

(ex-post portfolio performances).
In this study made 8 portfolios and divided them into 3 class.
I. Optimal, without short-sales, long term - 3 stocks(from 2009),
1/N Strategy, long run - 10 stocks (from 2009),
Benchmark, long run - 10 stocks (from 2009).
II. Optimal, without short-sales, long term - 3 stocks (from 2009),
1/N strategy, long run - 3 stocks from optimal (from 2009),
Benchmark, long run - 3 stocks from optimal (from 2009).
III. Optimal without short-sales(rebalanced)
1/N Strategy (rebalanced, follow stocks from optimal)
Benchmark (rebalanced, follow optimal stocks).

Table 5
The Results of ex-post performances

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IHSG</td>
<td>0.1062</td>
</tr>
<tr>
<td>Average Sharpe ratio, from monthly returns</td>
<td>0.1848</td>
</tr>
<tr>
<td># Sharpe Ex-Post Performances</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.2528</td>
</tr>
<tr>
<td>2</td>
<td>0.2327</td>
</tr>
<tr>
<td>3</td>
<td>0.2242</td>
</tr>
<tr>
<td>4</td>
<td>0.1914</td>
</tr>
<tr>
<td>5</td>
<td>0.16249</td>
</tr>
<tr>
<td>6</td>
<td>0.16092</td>
</tr>
<tr>
<td>7</td>
<td>0.15948</td>
</tr>
<tr>
<td>8</td>
<td>0.09391</td>
</tr>
</tbody>
</table>

53 Mutual Funds average return : 0.17%
Risk, standard deviation : 4.63%
Average excess return of 53 mutual funds : 0.17%
Average beta : 0.9344
Average α, Jensen : -0.002797
Average r-squared : 0.8249

Source: data processed, 2015

Figure 7: Ex-post performance, risk and return

Table 5 is sorted portfolio of Sharpe ratio value and this is to put us at ease in describing of the slope which can be seen in figure 7. From the results, the performances of the benchmark proportions look better. The conclusion from the result is it is hard to beat the benchmark.

5. The Black-Litterman Model.
Suppose there is an investor who wants to invest 10 stocks like what we have discussed previously discuss. Step I “what does the market think? Assume that the benchmark is optimal and derives the expected returns of each asset under this assumption.”

Figure 8: Illustrate on the graph

It will generate all assets returns and it can also be used as anticipated return of each asset. The returns are derived from optimal portfolios.

Table 6

<table>
<thead>
<tr>
<th>Securities</th>
<th>Expected Benchmark Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>AALI</td>
<td>0.83%</td>
</tr>
<tr>
<td>ASII</td>
<td>1.11%</td>
</tr>
<tr>
<td>INDF</td>
<td>0.98%</td>
</tr>
<tr>
<td>INTP</td>
<td>0.99%</td>
</tr>
<tr>
<td>KLBF</td>
<td>0.99%</td>
</tr>
<tr>
<td>PGAS</td>
<td>0.92%</td>
</tr>
<tr>
<td>SMRA</td>
<td>1.22%</td>
</tr>
<tr>
<td>TLKM</td>
<td>1.01%</td>
</tr>
<tr>
<td>UNTR</td>
<td>0.94%</td>
</tr>
<tr>
<td>UNVR</td>
<td>0.93%</td>
</tr>
</tbody>
</table>

Source: data processed, 2015

In Step II allows the investors to give opinion which might contributes a lot in improving the good performance in the future compared to the previous one. It means that there will be an overweight in those assets.

Table 7 Adjusted opinion for all returns

<table>
<thead>
<tr>
<th>Securities</th>
<th>Opinions of expected return</th>
<th>Expected Return of Benchmark</th>
<th>Analyst opinion</th>
<th>Expected Return Adjusted</th>
<th>Opinion adjusted optimized Portfolio</th>
<th>Benchmark Proportions</th>
<th>Proportions Adjusted [Final]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNVR</td>
<td>1.10%</td>
<td>0.93%</td>
<td>-0.17%</td>
<td>1.08%</td>
<td>18.24%</td>
<td>18.35%</td>
<td>19.28%</td>
</tr>
<tr>
<td>KLBF</td>
<td>1.00%</td>
<td>0.99%</td>
<td>-0.01%</td>
<td>0.97%</td>
<td>5.82%</td>
<td>6.39%</td>
<td>6.04%</td>
</tr>
<tr>
<td>TLKM</td>
<td>1.00%</td>
<td>1.01%</td>
<td>-0.01%</td>
<td>1.04%</td>
<td>17.38%</td>
<td>21.50%</td>
<td>19.03%</td>
</tr>
<tr>
<td>ASII</td>
<td>1.00%</td>
<td>1.11%</td>
<td>-0.11%</td>
<td>1.02%</td>
<td>10.45%</td>
<td>22.38%</td>
<td>15.22%</td>
</tr>
<tr>
<td>AALI</td>
<td>0.83%</td>
<td>0.83%</td>
<td>-0.00%</td>
<td>0.77%</td>
<td>4.96%</td>
<td>2.84%</td>
<td>4.11%</td>
</tr>
<tr>
<td>INDF</td>
<td>0.98%</td>
<td>0.98%</td>
<td>0.00%</td>
<td>0.94%</td>
<td>0.49%</td>
<td>4.41%</td>
<td>2.06%</td>
</tr>
<tr>
<td>INTP</td>
<td>0.99%</td>
<td>0.99%</td>
<td>0.00%</td>
<td>0.98%</td>
<td>4.73%</td>
<td>6.85%</td>
<td>5.58%</td>
</tr>
<tr>
<td>PGAS</td>
<td>0.92%</td>
<td>0.92%</td>
<td>0.00%</td>
<td>0.88%</td>
<td>10.42%</td>
<td>10.83%</td>
<td>10.58%</td>
</tr>
<tr>
<td>SMRA</td>
<td>1.22%</td>
<td>1.22%</td>
<td>0.00%</td>
<td>1.20%</td>
<td>3.49%</td>
<td>1.63%</td>
<td>2.75%</td>
</tr>
<tr>
<td>UNTR</td>
<td>0.94%</td>
<td>0.94%</td>
<td>0.00%</td>
<td>0.87%</td>
<td>4.02%</td>
<td>4.82%</td>
<td>4.34%</td>
</tr>
</tbody>
</table>

*Total weight: 100.00%

r opinion confidence: 0.6

Source: data processed, 2015

From table 7, it can be seen that investors think that opinions of the returns will influence all parameters. It happens because it has a correlation to each other in variance-covariance, moreover it is done by calculating the deviation from what the market think, in column 4. Then, it is followed by calculating adjusted opinion of the expected returns, in column 5. When giving opinions in one or some assets, it will turn out to be overweight or vice versa and it is applied to all assets in the portfolio. After that, the expected returns will be adjusted then the portfolio optimization will be computed as the result is shown in column 6. The last is adjusting the proportions from the opinion return taken from the proportion and the benchmark proportion. This calculation is considered as simple approach as it is adjusted from what the investor believe in opinions which is 60% and the result in shown in column 8.
CONCLUSION

1. Using historical data, optimized portfolio typically produces negative position (short-selling), although it can be found without short sales by restriction. Efficient frontier with short-sales constrain becomes inside of efficient frontier with short-sales allowed.

2. The descriptive part of the CAPM from 40 stocks using market proxy (IHSG). An equally weighted portfolio is described as the portfolios with higher risk (beta) have, roughly, a higher level of returns. The portfolios are roughly linear between betas and returns, 86 %, increase in beta is not considered perfect if it is associated with the returns. From the equation, the importance is looking at the equation which is still considered as a failure. In the ex-post, there found the efficient portfolio from 40 stocks. Meanwhile, the index of IHSG (benchmark) falls into the category of inefficient compared to efficient mean-variance portfolio of 40 stocks. The CAPM talks about all risky assets in the economy and those which are lacking of theoretical or empirical clarity on what constitutes the market portfolio.

3. In evaluating the performance of mutual funds compare to IHSG index. IHSG Index serves as the benchmark and the result shows that it is hard to beat the benchmark.

4. In ex-post performance of portfolio. By doing rebalance every year, the optimal portfolio do better. However, whether it is rebalanced or not, portfolios which have equal weight as its market capitalization tend to have good performance and lower risk shown by their standard deviation of returns. The results from performance show that the weight of portfolio standard (equal with market cap.) is hard to beat.

5. The Black-Litterman model allows investor to have some views of the stocks that will be turned into portfolio. The first assumption on the market is ex-ante efficient without the opinion. By giving the benchmark proportions and current risk-free rate, it is found that the expected return under this approach can directly as prediction or anticipation of the result. By giving the opinion of returns and confidence opinions, it results to derive an optimal portfolio from an adjustment of benchmark. Thus, it can be concluded that Black-Litterman model has more positivist approach to portfolio choice. However, the implemention of Black-Litterman models, is derived from the previous theories.

BIBLIOGRAPHY